skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kamau, Steve"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Twisted photonic crystals are photonic analogs of twisted monolayer materials such as graphene and their optical property studies are still in their infancy. This paper reports optical properties of twisted single-layer 2D+ moiré photonic crystals where there is a weak modulation in z direction, and bilayer moiré-overlapping-moiré photonic crystals. In weak-coupling bilayer moiré-overlapping-moiré photonic crystals, the light source is less localized with an increasing twist angle, similar to the results reported by the Harvard research group in References 37 and 38 on twisted bilayer photonic crystals, although there is a gradient pattern in the former case. In a strong-coupling case, however, the light source is tightly localized in AA-stacked region in bilayer PhCs with a large twist angle. For single-layer 2D+ moiré photonic crystals, the light source in Ex polarization can be localized and forms resonance modes when the single-layer 2D+ moiré photonic crystal is integrated on a glass substrate. This study leads to a potential application of 2D+ moiré photonic crystal in future on-chip optoelectronic integration. 
    more » « less
  2. A moiré photonic crystal is an optical analog of twisted graphene. A 3D moiré photonic crystal is a new nano-/microstructure that is distinguished from bilayer twisted photonic crystals. Holographic fabrication of a 3D moiré photonic crystal is very difficult due to the coexistence of the bright and dark regions, where the exposure threshold is suitable for one region but not for the other. In this paper, we study the holographic fabrication of 3D moiré photonic crystals using an integrated system of a single reflective optical element (ROE) and a spatial light modulator (SLM) where nine beams (four inner beams + four outer beams + central beam) are overlapped. By modifying the phase and amplitude of the interfering beams, the interference patterns of 3D moiré photonic crystals are systemically simulated and compared with the holographic structures to gain a comprehensive understanding of SLM-based holographic fabrication. We report the holographic fabrication of phase and beam intensity ratio-dependent 3D moiré photonic crystals and their structural characterization. Superlattices modulated in the z-direction of 3D moiré photonic crystals have been discovered. This comprehensive study provides guidance for future pixel-by-pixel phase engineering in SLM for complex holographic structures. 
    more » « less
  3. Organic-inorganic perovskites hold great promise as optoelectronic semiconductors for pure color light emitting and photovoltaic devices. However, challenges persist regarding their photostability and chemical stability, which limit their extensive applications. This paper investigates the laser radiation hardening and self-healing-induced properties of aged MAPbBr3 perovskites encapsulated in NiO nanotubes (MAPbBr3@NiO) using photoluminescence (PL) and fluorescence lifetime imaging (FLIM). After deliberately subjecting the MAPbBr3@ NiO to atmospheric conditions for two years, the sample remains remarkably stable. It exhibits no changes in PL wavelength during UV laser irradiation and self-healing. Furthermore, exposure to UV light at 375 nm enhances the PL of the self-healed MAPbBr3@NiO. FLIM analysis sheds light on the mechanism behind photodegradation, self-healing, and PL enhancement. The results indicate the involvement of many carrier-trapping states with low lifetime events and an increase in peak lifetime after self-healing. The formation of trapping states at the perovskite/nanotube interface is discussed and tested. This study provides new insights into the dynamics of photo-carriers during photodegradation and self-healing in organic-inorganic perovskites. 
    more » « less
  4. Abstract Twisted moiré photonic crystal is an optical analog of twisted graphene or twisted transition metal dichalcogenide bilayers. In this paper, we report the fabrication of twisted moiré photonic crystals and randomized moiré photonic crystals and their use in enhanced extraction of light in light-emitting diodes (LEDs). Fractional diffraction orders from randomized moiré photonic crystals are more uniform than those from moiré photonic crystals. Extraction efficiencies of 76.5%, 77.8% and 79.5% into glass substrate are predicted in simulations of LED patterned with twisted moiré photonic crystals, defect-containing photonic crystals and random moiré photonic crystals, respectively, at 584 nm. Extraction efficiencies of optically pumped LEDs with 2D perovskite (BA)2(MA)n−1PbnI3n+1ofn= 3 and (5-(2′-pyridyl)-tetrazolato)(3-CF3−5-(2′-pyridyl)pyrazolato) platinum(II) (PtD) have been measured. 
    more » « less
  5. The laser diffraction from periodic structures typically shows isolated and sharp point patterns at zeroth and ±nth orders. Diffraction from 2D graded photonic super-crystals (GPSCs) has demonstrated over 1000 spots due to the fractional diffractions. Here, we report the holographic fabrication of three types of 3D GPSCs through nine beam interferences and their characteristic diffraction patterns. The diffraction spots due to the fractional orders are merged into large-area diffraction zones for these three types of GPSCs. Three distinguishable diffraction patterns have been observed: (a) 3 × 3 Diffraction zones for GPSCs with a weak gradient in unit super-cell, (b) 5 × 5 non-uniform diffraction zones for GPSCs with a strong modulation in long period and a strong gradient in unit super-cell, (c) more than 5 × 5 uniform diffraction zones for GPSCs with a medium gradient in unit super-cell and a medium modulation in long period. The GPSCs with a strong modulation appear as moiré photonic crystals. The diffraction zone pattern not only demonstrates a characterization method for the fabricated 3D GPSCs, but also proves their unique optical properties of the coupling of light from zones with 360° azimuthal angles and broad zenith angles. 
    more » « less
  6. The study of twisted bilayer 2D materials has revealed many interesting physics properties. A twisted moiré photonic crystal is an optical analog of twisted bilayer 2D materials. The optical properties in twisted photonic crystals have not yet been fully elucidated. In this paper, we generate 2D twisted moiré photonic crystals without physical rotation and simulate their photonic band gaps in photonic crystals formed at different twisted angles, different gradient levels, and different dielectric filling factors. At certain gradient levels, interface modes appear within the photonic band gap. The simulation reveals “tic tac toe”-like and “traffic circle”-like modes as well as ring resonance modes. These interesting discoveries in 2D twisted moiré photonic crystal may lead toward its application in integrated photonics. 
    more » « less
  7. Twistronics has been studied for manipulating electronic properties through a twist angle in the formed moiré superlattices of two dimensional layer materials. In this paper, we study twistoptics for manipulating optical properties in twisted moiré photonic patterns without physical rotations. We describe a theoretic approach for the formation of single-layer twisted photonic pattern in square and triangular lattices through an interference of two sets of laser beams arranged in two cone geometries. The moiré period and the size of unit super-cell of moiré patterns are related to the twist angle that is calculated from the wavevector ratio of laser beams. The bright and dark regions in moiré photonic pattern in triangular lattices are reversible. We simulate E-field intensities and their cavity quality factors for resonance modes in moiré photonic pattern in square lattices. Due to the bandgap dislocation between the bright and dark regions, the resonance modes with very high quality-factors appears near bandgap edges for the moiré photonic pattern with a twist angle of 9.5 degrees. At the low frequency range, the resonance modes can be explained as Mie resonances. The cavity quality factor decreases for resonance modes when the twist angle is increased to 22.6 degrees. 
    more » « less
  8. null (Ed.)
    It is challenging to realize the complete broadband absorption of near-infrared in thin optical devices. In this paper, we studied high light absorption in two devices: a stack of Au-pattern/insulator/Au-film and a stack of Au-pattern/weakly-absorbing-material/Au-film where the Au-pattern was structured in graded photonic super-crystal. We observed multiple-band absorption, including one near 1500 nm, in a stack of Au-pattern/spacer/Au-film. The multiple-band absorption is due to the gap surface plasmon polariton when the spacer thickness is less than 30 nm. Broadband absorption appears in the near-infrared when the insulator spacer is replaced by a weakly absorbing material. E-field intensity was simulated and confirmed the formation of gap surface plasmon polaritons and their coupling with Fabry–Pérot resonance. 
    more » « less